Skip to main content
U.S. flag

An official website of the United States government

Publications by Author

Way, Danielle

  • 1. Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 2021;27(13):3079–3094. doi:10.1111/gcb.15620
  • 1. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2019;2. doi:10.3389/ffgc.2019.00054

Weber, Peter

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Weldon, S.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Weslien, P.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Weston, David

  • 1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 2019;25(9):2993–3004. doi:10.1111/gcb.14715
  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8
  • 1. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 2016;211(1):57–64. doi:10.1111/nph.13993
  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 2017;122(5):1078–1097. doi:10.1002/2016jg003711
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 2014;7(2):260–262. doi:10.4161/psb.18802
  • 1. Shaw J, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ. The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics. In: Advances in Botanical Research. Elsevier; 2016. pp. 167–187. doi:10.1016/bs.abr.2016.01.003
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Wiesenberg, Guido

  • 1. Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 2021;28(3):883–898. doi:10.1111/gcb.15955

Wilson, Rachel

  • 1. Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 2022;17(3):e0263994. doi:10.1371/journal.pone.0263994
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 2018;123(2):479–494. doi:10.1002/2017jg004007
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511

Wood, Jeffery

  • 1. Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 2019;12(4):1601–1612. doi:10.5194/gmd-12-1601-2019

Wullschleger, Stan

  • 1. Dusenge M, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co‐occurring boreal trees. Global Change Biology. 2021;27(13):3079–3094. doi:10.1111/gcb.15620
  • 1. Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD. A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology. 2010;150(3):497–498. doi:10.1016/j.agrformet.2009.11.020
  • 1. Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 2019;39(4):556–572. doi:10.1093/treephys/tpy140
  • 1. Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 2015;116(5):821–832. doi:10.1093/aob/mcv115
  • 1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 2017;122(5):1078–1097. doi:10.1002/2016jg003711
  • 1. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 2014;7(2):260–262. doi:10.4161/psb.18802
  • 1. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2019;2. doi:10.3389/ffgc.2019.00054
  • 1. Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology. 2011;17(2):1083–1096. doi:10.1111/j.1365-2486.2010.02221.x
  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458
  • 1. Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 2021;27(9):1820–1835. doi:10.1111/gcb.15543

Wymore, Ann

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

Xia, Jianyang

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Xu, X.

  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963

Yang, Xiaojuan

  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x

Yang, Zamin

  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14

Yu, Rieka

  • 1. Gill AL, Giasson M, Yu R, Finzi AC. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce‐dominated ombrotrophic bog. Global Change Biology. 2017;23(12):5398–5411. doi:10.1111/gcb.13806

Yuan, Fenghui

  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137

Yuan, Fengming

  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137

Zaehle, S.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Zalman, Cassandra

  • 1. Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 2018;118:156–160. doi:10.1016/j.soilbio.2017.11.025
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011

Zhu, B.

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Živković, T.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

mnspruce.ornl.gov

An official website of the U.S. Department of Energy and the USDA Forest Service

Looking for U.S. government information and services?
Visit USA.gov