Skip to main content
U.S. flag

An official website of the United States government

Publications by Author

Haynes, Kristine

  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049

Heckman, Katherine

  • 1. Fernandez CW, Heckman K, Kolka RK, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 2019;22(3):498–505. doi:10.1111/ele.13209
  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755

Heiderman, Ryan

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1

Helbig, M.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Helfter, C.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Hendershot, Nicholas

  • 1. Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 2020;15(2):e0223744. doi:10.1371/journal.pone.0223744

Heyman, Heino

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Hicks Pries, Caitlin

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Hines, Mark

  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011

Hirano, T.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Hobbie, Erik

  • 1. Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 2020;117(30):17627–17634. doi:10.1073/pnas.2003361117
  • 1. Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14(9):2481–2494. doi:10.5194/bg-14-2481-2017

Hofmockel, Kirsten

  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14(9):2481–2494. doi:10.5194/bg-14-2481-2017

Hook, Leslie

  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 2015;4(2):203–213. doi:10.5194/gi-4-203-2015
  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8

Hopple, Anya

  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z

Hough, Moira

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Hoyt, David

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Huang, Yuanyuan

  • 1. Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 2017;122(8):2046–2063. doi:10.1002/2016jg003725
  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040

Hufkens, Koen

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1

Hui, Dafeng

  • 1. Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 2022;17(3):e0263994. doi:10.1371/journal.pone.0263994

Humphreys, E.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Imvittaya, Aopeau

  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14

Iversen, Colleen

  • 1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 2019;25(9):2993–3004. doi:10.1111/gcb.14715
  • 1. Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 2017;424(1-2):123–143. doi:10.1007/s11104-017-3231-z
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 2020;3(5):640–652. doi:10.1002/ppp3.10172
  • 1. Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 2020;117(30):17627–17634. doi:10.1073/pnas.2003361117
  • 1. Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2021;2022(1). doi:10.1111/oik.08584
  • 1. Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 2014;119(4):661–675. doi:10.1002/2013jg002492
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14(9):2481–2494. doi:10.5194/bg-14-2481-2017
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x

Janssens, Ivan

  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Jardine, Phillip

  • 1. Tipping E, Chamberlain PM, Fröberg M, Hanson PJ, Jardine PM. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry. 2011;108(1-3):91–107. doi:10.1007/s10533-011-9575-1

Jawdy, Sara

  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072
  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Jekabson, Eriks

  • 1. Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs JS. Air Flow and Heat Transfer in a Temperature-Controlled Open Top Enclosure. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. 2013. doi:10.1115/imece2012-86352

Jensen, Anna

  • 1. Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 2019;39(4):556–572. doi:10.1093/treephys/tpy140
  • 1. Jensen AM, Eckert D, Carter KR, Persson M, Warren JM. Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development. Frontiers in Forests and Global Change. 2021;3. doi:10.3389/ffgc.2020.601046
  • 1. Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Annals of Botany. 2015;116(5):821–832. doi:10.1093/aob/mcv115
  • 1. Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species‐specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology. 2021;27(9):1820–1835. doi:10.1111/gcb.15543
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422

Jiang, Jiang

  • 1. Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 2017;122(8):2046–2063. doi:10.1002/2016jg003725
  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040

Jiang, Lifen

  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022

Jicha, Terri

  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x

Johnston, Eric

  • 1. Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 2020;15(2):e0223744. doi:10.1371/journal.pone.0223744
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Jones, Jennifer

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Jovan, Sarah

  • 1. Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 2018;105(2):266–274. doi:10.1002/ajb2.1022

Jung, Chang

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Kane, Evan

  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049
  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465

Kauserud, Håvard

  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755

Keller, Jason

  • 1. Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK. Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?. Soil Biology and Biochemistry. 2015;86:34–41. doi:10.1016/j.soilbio.2015.03.016
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Brehme T, Bridgham SD, Keller JK, Warren JM, Griffiths NA, et al. Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology. 2021;603:127137. doi:10.1016/j.jhydrol.2021.127137
  • 1. Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 2018;118:156–160. doi:10.1016/j.soilbio.2017.11.025
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011
  • 1. Yuan F, Wang Y, Ricciuto DM, Shi X, Yuan F, Hanson PJ, Bridgham SD, Keller JK, Thornton PE, Xu X. An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2020jg005963
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022

Kennedy, Peter

  • 1. Fernandez CW, Heckman K, Kolka RK, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 2019;22(3):498–505. doi:10.1111/ele.13209
  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755

Khasanova, Albina

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Kiely, G.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

King, Anthony

  • 1. Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology. Tree Physiology. 2019;39(4):556–572. doi:10.1093/treephys/tpy140

Kivlin, Stephanie

  • 1. Defrenne CE, Abs E, Cordeiro AL, Dietterich L, Hough M, Jones JM, Kivlin SN, Chen W, Cusack D, Franco ALC, et al. The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists. New Phytologist. 2021;229(6):3058–3064. doi:10.1111/nph.17163

Klironomos, John

  • 1. Fernandez CW, Heckman K, Kolka RK, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 2019;22(3):498–505. doi:10.1111/ele.13209

Kluber, L.

  • 1. Kluber LA, Johnston ER, Allen SA, Hendershot N, Hanson PJ, Schadt CW. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLOS ONE. 2020;15(2):e0223744. doi:10.1371/journal.pone.0223744
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723

Kolka, Randall

  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049
  • 1. Fernandez CW, Heckman K, Kolka RK, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Klironomos J, editor. Ecology Letters. 2019;22(3):498–505. doi:10.1111/ele.13209
  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662
  • 1. Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 2017;424(1-2):123–143. doi:10.1007/s11104-017-3231-z
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA. Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5‐year period. Oikos. 2021;2022(1). doi:10.1111/oik.08584
  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z
  • 1. McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 2020;15(12):124066. doi:10.1088/1748-9326/abc4fb
  • 1. Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry. 2016;129(3):255–272. doi:10.1007/s10533-016-0230-8
  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465
  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468

Kolton, Max

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 2019;25(9):2993–3004. doi:10.1111/gcb.14715
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z

Kostka, Joel

  • 1. Carrell AA, Kolton M, Glass JB, Pelletier DA, Kostka JE, Iversen CM, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology. 2019;25(9):2993–3004. doi:10.1111/gcb.14715
  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011
  • 1. Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson PJ, Chanton JP. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research: Biogeosciences. 2018;123(2):479–494. doi:10.1002/2017jg004007
  • 1. Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research: Biogeosciences. 2014;119(4):661–675. doi:10.1002/2013jg002492
  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 2018;118:156–160. doi:10.1016/j.soilbio.2017.11.025
  • 1. Hopple AM, Wilson RM, Kolton M, Zalman CM, Chanton JP, Kostka JE, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-16311-8
  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118
  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21
  • 1. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 2016;211(1):57–64. doi:10.1111/nph.13993
  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Baysinger MR, Wilson RM, Hanson PJ, Kostka JE, Chanton JP. Compositional stability of peat in ecosystem-scale warming mesocosms. Hui D, editor. PLOS ONE. 2022;17(3):e0263994. doi:10.1371/journal.pone.0263994
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17

Krassovski, Misha

  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO<sub>2</sub> atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017
  • 1. Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 2015;4(2):203–213. doi:10.5194/gi-4-203-2015
  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1
  • 1. Krassovski MB, Lyon GE, Riggs JS, Hanson PJ. Near-real-time environmental monitoring and large-volume data collection over slow communication links. Geoscientific Instrumentation, Methods and Data Systems. 2018;7(4):289–295. doi:10.5194/gi-7-289-2018

Kretz, Cecilia

  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17

Kyle, Jennifer

  • 1. Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CM, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, et al. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences. 2021;118(25). doi:10.1073/pnas.2004192118

Latimer, John

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x

Laurila, T.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Lawrence, Travis

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0
  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072

Leahy, P.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Lee, Jun

  • 1. Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, et al. Habitat‐adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytologist. 2022;234(6):2111–2125. doi:10.1111/nph.18072

Liang, Junyi

  • 1. Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 2019;12(4):1601–1612. doi:10.5194/gmd-12-1601-2019

Lietard, Jory

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Lilleskov, Erik

  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21
  • 1. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist. 2016;211(1):57–64. doi:10.1111/nph.13993

Lin, Xueju

  • 1. Zalman CM, Keller JK, Tfaily MM, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton JP, Kostka JE, Gill AL, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139(2):155–177. doi:10.1007/s10533-018-0460-z
  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14
  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17
  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14

Lohila, A.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Louie, Katherine

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Lovell, C.

  • 1. Lin X, Tfaily MM, Steinweg JM, Chanton PR, Esson K, Yang ZK, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3518–3530. doi:10.1128/aem.00205-14
  • 1. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton PR, Imvittaya A, Chanton JP, Cooper WT, Schadt CW, Kostka JE. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Lovell CR, editor. Applied and Environmental Microbiology. 2014;80(11):3531–3540. doi:10.1128/aem.00206-14

Lu, Xingjie

  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022

Luo, Yiqi

  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040
  • 1. Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 2017;122(8):2046–2063. doi:10.1002/2016jg003725
  • 1. Torn MS, Chabbi A, Crill P, Hanson PJ, Janssens IA, Luo Y, Hicks Pries CE, Rumpel C, Schmidt MWI, Six J, et al. A call for international soil experiment networks for studying, predicting, and managing global change impacts. SOIL. 2015;1(2):575–582. doi:10.5194/soil-1-575-2015

Luo, Yiqi

  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019

Lyon, Glen

  • 1. Krassovski MB, Lyon GE, Riggs JS, Hanson PJ. Near-real-time environmental monitoring and large-volume data collection over slow communication links. Geoscientific Instrumentation, Methods and Data Systems. 2018;7(4):289–295. doi:10.5194/gi-7-289-2018

Ma, Shuang

  • 1. Huang Y, Jiang J, Ma S, Ricciuto DM, Hanson PJ, Luo Y. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation. Journal of Geophysical Research: Biogeosciences. 2017;122(8):2046–2063. doi:10.1002/2016jg003725
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, et al. Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development. 2019;12(3):1119–1137. doi:10.5194/gmd-12-1119-2019
  • 1. Jiang J, Huang Y, Ma S, Stacy M, Shi Z, Ricciuto DM, Hanson PJ, Luo Y. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming. Journal of Geophysical Research: Biogeosciences. 2018;123(3):1057–1071. doi:10.1002/2017jg004040

Maillard, François

  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755

Malhotra, Avni

  • 1. Ofiti NOE, Solly EF, Hanson PJ, Malhotra A, Wiesenberg GLB, Schmidt MWI. Warming and elevated CO <sub>2</sub> promote rapid incorporation and degradation of plant‐derived organic matter in an ombrotrophic peatland. Global Change Biology. 2021;28(3):883–898. doi:10.1111/gcb.15955
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences. 2017;122(5):1078–1097. doi:10.1002/2016jg003711
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences. 2020;117(30):17627–17634. doi:10.1073/pnas.2003361117

Mammarella, I.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Mao, Jiafu

  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Ricciuto DM, Xu X, Shi X, Wang Y, Song X, Schadt CW, Griffiths NA, Mao J, Warren JM, Thornton PE, et al. An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research: Biogeosciences. 2021;126(8). doi:10.1029/2019jg005468
  • 1. Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences. 2015;12(21):6463–6477. doi:10.5194/bg-12-6463-2015
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021

Markillie, Lye

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Mayali, Xavier

  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21

Mayes, Melanie

  • 1. Liang J, Wang G, Ricciuto DM, Gu L, Hanson PJ, Wood JD, Mayes MA. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development. 2019;12(4):1601–1612. doi:10.5194/gmd-12-1601-2019

McCune, Bruce

  • 1. Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 2018;105(2):266–274. doi:10.1002/ajb2.1022

McFarlane, Karis

  • 1. Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, et al. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 2021;126(11). doi:10.1029/2021jg006511
  • 1. Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 2017;424(1-2):123–143. doi:10.1007/s11104-017-3231-z
  • 1. Kolton M, Weston DJ, Mayali X, Weber PK, McFarlane KJ, Pett-Ridge J, Somoza MM, Lietard J, Glass JB, Lilleskov EA, et al. Defining the Sphagnum Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio. 2022;13(1). doi:10.1128/mbio.03714-21
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723
  • 1. Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, et al. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment. Soil Science Society of America Journal. 2017;81(6):1668–1688. doi:10.2136/sssaj2016.12.0422
  • 1. Hobbie EA, Chen J, Hanson PJ, Iversen CM, McFarlane KJ, Thorp NR, Hofmockel KS. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14(9):2481–2494. doi:10.5194/bg-14-2481-2017

McLennan, David

  • 1. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change. 2019;2. doi:10.3389/ffgc.2019.00054

McMahon, Shawna

  • 1. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. Journal of Visualized Experiments. 2013;(81). doi:10.3791/50961

McPartland, Mara

  • 1. McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 2020;15(12):124066. doi:10.1088/1748-9326/abc4fb
  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465

Meade, N.

  • 1. Zalman CM, Meade N, Chanton JP, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biology and Biochemistry. 2018;118:156–160. doi:10.1016/j.soilbio.2017.11.025

Medvedeff, Cassandra

  • 1. Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK. Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?. Soil Biology and Biochemistry. 2015;86:34–41. doi:10.1016/j.soilbio.2015.03.016
  • 1. Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff CA, McFarlane KJ, Kostka JE, Kolton M, et al. Stability of peatland carbon to rising temperatures. Nature Communications. 2016;7(1). doi:10.1038/ncomms13723

Meng, Lin

  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, et al. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2. Biogeosciences. 2021;18(2):467–486. doi:10.5194/bg-18-467-2021

Meredith, Laura

  • 1. Wilson RM, Tfaily MM, Rich VI, Keller JK, Bridgham SD, Zalman CM, Meredith L, Hanson PJ, Hines M, Pfeifer-Meister L, et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry. 2017;112:22–32. doi:10.1016/j.orggeochem.2017.06.011

Milliman, Thomas

  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1

Mitchell, Carl

  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336
  • 1. Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CP. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 2017;154:247–259. doi:10.1016/j.atmosenv.2017.01.049
  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662
  • 1. Stelling JM, Sebestyen SD, Griffiths NA, Mitchell CP, Green MB. The stable isotopes of natural waters at the Marcell Experimental Forest. Hydrological Processes. 2021;35(10). doi:10.1002/hyp.14336

Mitchell, Hugh

  • 1. Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL, Chu RK, Mitchell HD, Orr G, Markillie LM, et al. Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. The ISME Journal. 2021;16(4):1074–1085. doi:10.1038/s41396-021-01136-0

Montgomery, Rebecca

  • 1. McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka RK, Palik B. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters. 2020;15(12):124066. doi:10.1088/1748-9326/abc4fb
  • 1. McPartland MY, Kane ES, Falkowski MJ, Kolka RK, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology. 2018;25(1):93–107. doi:10.1111/gcb.14465

Morton, Peter

  • 1. Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, et al. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Stams AJM, editor. Applied and Environmental Microbiology. 2017;83(17). doi:10.1128/aem.01174-17

Muchero, Wellington

  • 1. Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw J, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment. 2014;38(9):1737–1751. doi:10.1111/pce.12458

Mundra, Sunil

  • 1. Maillard F, Fernandez CW, Mundra S, Heckman K, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist. 2021;234(6):2032–2043. doi:10.1111/nph.17755

Nater, Edward

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

Nelson, Peter

  • 1. Smith RJ, Nelson PR, Jovan S, Hanson PJ, McCune B. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany. 2018;105(2):266–274. doi:10.1002/ajb2.1022

Nettles, Robert

  • 1. Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles R, Allen MF, Hanson PJ, Iversen CM. High‐resolution minirhizotrons advance our understanding of root‐fungal dynamics in an experimentally warmed peatland. PLANTS, PEOPLE, PLANET. 2020;3(5):640–652. doi:10.1002/ppp3.10172
  • 1. Krassovski MB, Riggs JS, Hook LA, Nettles R, Hanson PJ, Boden TA. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems. 2015;4(2):203–213. doi:10.5194/gi-4-203-2015
  • 1. Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles R, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–371. doi:10.1038/s41586-018-0399-1
  • 1. Hanson PJ, Riggs JS, Nettles R, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO&lt;sub&gt;2&lt;/sub&gt; atmosphere. Biogeosciences. 2017;14(4):861–883. doi:10.5194/bg-14-861-2017

Nicholas, Sarah

  • 1. Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CP, Griffiths NA, et al. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science &amp; Technology. 2022;56(2):1433–1444. doi:10.1021/acs.est.1c04662

Nilsson, M.

  • 1. Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. 2022. doi:10.1038/s41558-022-01428-z

Niu, Shuli

  • 1. Ma S, Jiang L, Wilson RM, Chanton JP, Bridgham SD, Niu S, Iversen CM, Malhotra A, Jiang J, Lu X, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences. 2022;19(8):2245–2262. doi:10.5194/bg-19-2245-2022

Nolan, James

  • 1. Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ. Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground‐Penetrating Radar and Probing. Soil Science Society of America Journal. 2012;76(5):1911–1918. doi:10.2136/sssaj2012.0040

Norby, Richard

  • 1. Shi X, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, et al. Modeling the hydrology and physiology of Sphagnum moss in a northern temperate bog. Biogeosciences Discussion . 2020;2020:1–49. doi:10.5194/bg-2020-90
  • 1. Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil. 2017;424(1-2):123–143. doi:10.1007/s11104-017-3231-z
  • 1. Iversen CM, Latimer JM, Brice DJ, Childs J, Vander Stel H, Defrenne CE, Graham JD, Griffiths NA, Malhotra A, Norby RJ, et al. Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems. 2022. doi:10.1007/s10021-022-00744-x
  • 1. Norby RJ, Childs J, Hanson PJ, Warren JM. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution. 2019;9(22):12571–12585. doi:10.1002/ece3.5722
  • 1. Salmon VG, Brice DJ, Bridgham SD, Childs J, Graham JD, Griffiths NA, Hofmockel KS, Iversen CM, Jicha TM, Kolka RK, et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 2021;466(1-2):649–674. doi:10.1007/s11104-021-05065-x
  • 1. Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD. A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology. 2010;150(3):497–498. doi:10.1016/j.agrformet.2009.11.020
  • 1. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD. From systems biology to photosynthesis and whole-plant physiology. Plant Signaling & Behavior. 2014;7(2):260–262. doi:10.4161/psb.18802
  • 1. Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, et al. Rapid Net Carbon Loss From a Whole‐Ecosystem Warmed Peatland. AGU Advances. 2020;1(3). doi:10.1029/2020av000163

mnspruce.ornl.gov

An official website of the U.S. Department of Energy and the USDA Forest Service

Looking for U.S. government information and services?
Visit USA.gov